

Lesson Plan

Name of the Faculty	: Mr. Pardeep
Discipline	: Mechanical Engineering
Semester	: 6 th
Subject	: Heat Transfer (PCC-ME -306G)
Lesson Plan Duration	: 15 Weeks (from May. 2021 to Aug. 2021)

** Work Load (Lecture) per week (in hours): Lectures-03, Practicals-01

Week	Theory		Practical	
	Lecture	Торіс	Practical	Торіс
	Day	(including assignment/test)	day	_
1 st	1 st	Basics and Laws: Definition of Heat Transfer, Reversible and irreversible processes	1 st	To determine the thermal conductivity of a metallic rod.
	2 nd	Modes of heat flow		
	3 rd	Combined heat transfer system and law of energy conservation		
2 nd	4 th	Steady State Heat Conduction: Introduction, I-D heat conduction through a plane wall	2 nd	To determine the thermal conductivity of an insulating power.
	5 th	Steady State Heat Conduction in long hollow cylinder		
	6 th	Steady State Heat Conduction in hollow sphere		
3 rd	7 th	Conduction equation in Cartesian Co-ordinates.	3 rd	To determine the thermal conductivity of an insulating power
	8 th	Conduction equation in Polar Co-ordinates.		
	9 th	Conduction equation in Spherical Co-ordinates.		

4 th	10 th 11 th 12 th	Steady State Conduction with Heat Generation: Introduction1 – D heat conduction with heat sourcesExtended surfaces (fins), Fin effectiveness	4 th	To find the effectiveness of a pin fin in a rectangular duct natural convective condition and plot temperature distribution along its length.
5 th	13 th	2-D heat conduction, Numericals	5 th	To find the effectiveness of a pin fin in a rectangular duct under forced convective and plot
	14 th	Transient Heat Conduction: Systems with negligible internal resistance		along its length.
	15 th	Transient heat conduction in plane walls		
6 th	16 th	Transient heat conduction in cylinders, spheres with convective boundary conditions	6 th	To determine the surface heat transfer coefficient for a heated vertical tube under natural convection
	17 th	Chart solution		and plot the variation of
	18 th	Relaxation Method, Numericals.		local heat transfer coefficient along the length of the tube. Also compare the results with those of the correlation.
7 th	19 th	Convection: Forced convection-Thermal and hydro-dynamic boundary layers	7 th	To determine average heat transfer coefficient for a externally heated horizontal pipe under forced
	20 th	Equation of continuity, Momentum and energy equations		convection & plot Reynolds and Nusselt numbers along the length of pipe. Also compare the results with those of the correlations.

	21 st	Some results for flow over a flat plate and flow through tube		
8 th	22 nd	Fluid friction and heat transfer (Colburn analogy)	8 th	To measure the emmisivity of the gray body (plate) at different temperature and plot the variation of emmisivity with surface temperature.
	23 rd	free convection from a vertical flat plate		
	24 th	Empirical relations for free convection from vertical and horizontal o\planes & cylinders, Numericals		
9 th	25 th	Thermal Radiation: The Stephen-Boltzmann law, The black body radiation	9 th	To find overall heat transfer coefficient and effectiveness of a heat exchange under parallel
	26 th	Shape factors and their relationships, Heat exchange between nonblack bodies		and counter flow conditions. Also plot the temperature distribution in
	27 th	Electrical network for radiative exchange in an enclosure of two or three gray bodies, Radiation shields, Numericals		both the cases along the length of heat of heat exchanger.
10 th	28 th	Heat Exchangers: Classification, Performance variables	10 th	To verify the Stefen-Boltzmann constant for thermal radiation
	29 th	Analysis of a parallel/counter flow heat exchanger		
	30 th	Heat exchanger effectiveness, Numericals.		
11 th	31 th	Winglets, Types of Winglets, Heat Transfer Augmentation Process	11 th	Revision
	32 nd	Effect of heat treatment augmentation		
	33 rd	Application of heat treatment augmentation process		

12 th	34 th	Heat transfer augmentation in a channel flow.	12 th	Revision
	35 th	Heat Transfer with Change of Phase: Laminar film condensation on a vertical plate	13 th	
	36 th	Drop-wise condensation, Boiling regimes, Free convective		
13 th	37 th	Nucleate and film boiling, Numericals	14 th	Revision
	38 th	Revision		
	39 th	Revision		
14^{th}	40^{th}	Revision		Revision
	41 st	Revision		
	42 nd	Revision		
15 th	43 rd	Revision		Revision
	44 th	Revision		
	45^{th}	Revision		